• The cross product of two vectors $\vec{\mathbf{x}} = \langle x_1, x_2, x_3 \rangle$ and $\vec{\mathbf{y}} = \langle y_1, y_2, y_3 \rangle$ in \mathbb{R}^3 can be computed as

$$\vec{\mathbf{x}} \times \vec{\mathbf{y}} = \det \begin{pmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} \\ = \vec{\mathbf{i}}(x_2y_3 - x_3y_2) - \vec{\mathbf{j}}(x_1y_3 - x_3y_1) + \vec{\mathbf{k}}(x_1y_2 - x_2y_1),$$

where \vec{i} , \vec{j} and \vec{k} are the standard unit vectors in \mathbb{R}^3 .

Properties of Cross Products

- Note that $\vec{\mathbf{x}} \times \vec{\mathbf{y}} = -\vec{\mathbf{y}} \times \vec{\mathbf{x}}$ for all $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^3$.
- Theorem 1.35: Let \vec{x} and \vec{y} be vectors in \mathbb{R}^3 . Then
 - $\vec{\mathbf{x}} \times \vec{\mathbf{y}}$ is orthogonal to both $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ with direction determined by the following right-hand rule: if you position your right hand so that your fingers curl in the direction from $\vec{\mathbf{x}}$ to $\vec{\mathbf{y}}$, then your thumb points in the appropriate direction for $\vec{\mathbf{x}} \times \vec{\mathbf{y}}$.
 - x × y has length ||x|| ||y|| sin θ, where θ is the angle between x and y. (In other words, the length of x × y is equal to the area of the parallelogram P determined by x and y.)

Computing Volumes

Theorem 1.40: The volume of the parallelopiped *T* spanned by vectors $\vec{\mathbf{x}}, \vec{\mathbf{y}}, \vec{\mathbf{z}} \in \mathbb{R}^3$ is equal to $|(\vec{\mathbf{x}} \times \vec{\mathbf{y}}) \cdot \vec{\mathbf{z}}|$.

